Wizard sizing / Machine information

Machine information

The Machine information regarding the selected application is input.
In the case of load the data with Data load / delete and input them in that time. When data were load with Data load/ delete, or Machine Infomatino already inputted, the Machine Infomation that were already finished setting are displayed.

[Operation Procedure]

  1. Input data in the data input column.
    The saved data is loaded if necessary (Click the Load data button).
    The Inertia calculation can calculate the inertia value.
    The Transmission Calculate button is displayed beside the Gear Ratio input column.
    Because this advances to Transmission Calculate when you click this button, you can calculate Gear ratio by setting Transmission.
    The Inertia Calculate button is displayed beside the Inertia input column.
    Because this advances to Inertia Calculate when you click this button, you can calculate Inertia.
  2. Click "Next" to advance to the Velocity diagram.

     *Relations between movement direction of load and signs of velocity
          Here defines that right direction of the screen and upper direction of the movement of a load as "plus".
          In other word, when you input a plus value at speed parameter with Velocity diagram, a load moves to right direction or upper direction.
          Or, the external force of a load is defined a external force from a right direction or a upper direction as plus, and is defined a external force from a left direction or a lower direction as minus.

     *Relations between total efficiency and gear efficiency
          Total efficiency whole of mechanism dose not included gear efficiency.
          If you want to input efficiency of whole machine, you need to input it at the column of total efficiency, and to input 1 at the column of gear efficiency.


[Screen Structure]



Machine information Screen (Ball Screw <horizontal>)

  1. Application Preview
    A selected application is zoomed in.

  2. Load Data button
    The value of the Machine information is loaded from saved data.
    The data loaded is converted to the current set unit.


    Load data dialogue

    1. Data list
      Data is displayed from the latest one at the date.
      Click and select the following page button if necessary.

    2. Select the data loaded then click "OK".
      Goes to the previous screen without loading when click a "Cancel".

  3. Data Input Column
    In init state, all columns are blank.
    When data is read or hold, the value at that time is displayed.

    The number of maximum input beams of each input column is 12 figures(include such as a mark and a decimal point).
    Example
           Possible  :1.0,-1.0,1.2345678912,-1.234567891,1.0e+100  etc.
           Impossible;:1.00000000000,-1000000000,1.23456789123,1.000000e+001  etc.

    Rotary type
      Ball screw (horizontal)
    Timing belt (horizontal)
    Rack & pinion (horizontal)
    Ball screw (vertical)
    Timing belt (vertical)
    Rack & pinion (vertical)
    Roll feeder
    Rotor
    Rotation table
    Linear type
    Linear single axis

  4. Transmission calculation button
    The Transmission calculation window is open.
    *Displays beside the gear ratio input column.

  5. Inertia calculation button
    The Inertia calculation window is open.
    *Displays beside the inertia input column.

  6. Back button
    Returns to the Application.

  7. Next button
    Advances to the Velocity diagram.



[Mechanism Parameter and Equation in each application]

Constants
Gravityg
Circular constantπ

Input without Mechanism parameter
Rotary type motor
Rotor moment of ienrtiaJM
Motor option moment of inertia     JMO

Linear type motor
Moving coil massmM


Ball screw (horizontal) [Back]

1 Mass of load( mW )
2 Mass of table( mT )
3 Thrust( F )
4 Coefficient of friction( μ )
5 Gear ratio( R )
6 Gear + coupling inertia( JG )
Gear efficiency( ηG )
7 Pitch( PB )
8 Diameter( dB )
9 Length( lB )
Density( ρ )
Total efficiency( η )

Frictional force FFR= μ ( mW + mT )g (N)
Constant external force FC= F (N)

Moment of inertia component
Mechanism moment of inertia
(Ball screw)
JMC= πρB lB dB4 / ( 32 R 2 ) (kg.m2)    
Load mass moment of inertia     JW= (mW + mT )( Kvn / 2π )2     (kg.m2)
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= PB / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by force from backwardTBW= 0 (N.m)

Required torque

[Back]

Timing belt (horizontal) [Back]

1 Mass of load( mW )
2 Thrust( F )
3 Coefficient of friction( μ )
4 Gear ratio( R )
5 Gear + coupling inertia( JG )
Gear efficiency( ηG )
6 Pulley inertia( JP )
7 Pulley diameter( dP )
Total efficiency( η )
Friction forceFFR= μ mW g(N)
Constant external forceFC= F(N)

Momemnt of inertia component
Mechanism moment of inertia
(Pulley)
JMC= JP / R 2 (kg.m2)
Load mass moment of inertia     JW= mW ( Kvn / 2π )2(kg.m2)
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= π dP / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Consntant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by force from backwardTBW= 0 (N.m)

Required torque

[Back]

Rack & pinion (horizontal) [Back]

1 Mass of load( mW )
2 Thrust( F )
3 Coefficient of friction( μ )
4 Gear ratio( R )
5 Gear + coupling inertia( JG )
Gear efficiency( ηG )
6 Mass of rack( mR )
7 Pinion inertia( JPIN )
8 Pinion diameter( dPIN )
Total efficiency( η )

   
Frictional forceFFR= μ ( mW + mR )g(N)
Consntant external forceFC= F(N)

Moment of inertia component
Mechanism moment of inertia
(Pinion)
JMC= JPIN / R 2 (kg.m2)    
Load mass moment of inertia     JW= ( mW + mR )( Kvn / 2π )2     (kg.m2)
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= π dPIN / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by force from backwardTBW= 0 (N.m)

Required torque

[Back]

Ball screw (vertical) [Back]

1 Mass of load( mW )
2 Mass of table( mT )
3 Mass of counter( mWC )
4 Thrust in ascending( FVU )
5 Thrust in descending( FVD )
6 Gear ratio( R )
7 Gear + coupling inertia( JG )
Gear efficiency( ηG )
8 Pitch( PB )
9 Diameter( dB )
10 Length( lB )
Density( ρ )
Total efficiency( η )
*Reference
  • When you consider the resistance that a load is moving in a lower direction.
    Input a plus value in the Thrust in descending column.
  • When you consider the resistance that a load is moving in a upper direction.
    Input a minus value in the Thrust in ascending column.

   
Frictional forceFFR= 0(N)
Constant external force(Thrust + Gravity)     FC= - ( mW + mT - mWC )g(N)
Force from forwardFFW= FVU(N)
Force from backwardFBW= FVD(N)

Moment of inertia component
Mechanism moment of inertia
(Ball screw)
JMC= π ρB lB dB4 / ( 32 R 2 ) (kg.m2)    
Load mass moment of inertia     JW= ( mW + mT + mWC )( Kvn / 2π )2     (kg.m2)    
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= PB / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= FFW Kvn / ( 2π ) (N.m)
Torque by force from backwardTBW= FBW Kvn / ( 2π ) (N.m)

Required torque

[Back]

Timing belt (vertical) [Back]

1 Mass of load( mW )
2 Mass of counter( mWC )
3 Thrust in ascending( FVU )
4 Thrust in descending( FVD )
5 Gear ratio( R )
6 Gear + coupling inertia( JG )
Gear efficiency( ηG )
7 Pulley inertia( JP )
8 Pulley diameter( dP )
Total efficiency( η )

   
Frictional forceFFR= 0(N)
Constant external force(Thrust+Gravity)     FC= - ( mW + mT - mWC )g(N)
Torque by force from forwardFFW= FVU(N)
Torque by force from backwardFBW= FVD(N)

Moment of inertia component
Mechanism moment of inertia
(Pulley)
JMC= π ρB lB dB4 / ( 32 R 2 ) (kg.m2)    
Load mass moment of inertia     JW= ( mW + mT + mWC )( Kvn / 2π )2     (kg.m2)    
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= PB / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= FFW Kvn / ( 2π ) (N.m)
Torque by force from backwardTBW= FBW Kvn / ( 2π ) (N.m)

Required torque

[Back]

Rack & pinion (Vertical) [Back]

1 Mass of load( mW )
2 Thrust in ascending( FVU )
3 Thrust in descending( FVD )
4 Gear ratio( R )
5 Gear + coupling inertia( JG )
Gear efficiency( ηG )
6 Mass of rack( mR )
7 Pinion inertia( JPIN )
8 Pinion diameter( dPIN )
Total efficiency( η )

   
Frictional forceFFR= 0(N)
Constant force(Thrust+gravity)     FC= - ( mW + mR )g (N)
Force from forwardFFW= FVU(N)
Force from backwardFBW= FVD(N)

Moment of inertia component
Mechanism moment of inertia
(Pinion)
JMC= JPIN / R 2 (kg.m2)    
Load mass moment of inertiaJW= ( mW + mR )( Kvn / 2π )2     (kg.m2)    
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= π dPIN / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= FFW Kvn / ( 2π ) (N.m)
Torque by force from backwardTBW= FBW Kvn / ( 2π ) (N.m)

Required torque

[Back]

Roll feeder [Back]

1 Tension( F )
2 Press( FP )
3 Coefficient of friction( μ )
4 Gear ratio( R )
5 Gear + coupling inertia( JG )
Gear efficiency( ηG )
6 Driving roller inertia( JR1 )
7 Driven roller inertia( JR2 )
8 Driving roller diameter( dR )
Total efficiency( η )
*Reference
  • when the movement direction of a load is a right direction and the tension against a load is a left direction.
    Input a plus value in the speed(v) column with Velocity diagram and a minus value in the Tension(F) column.
  • when driven roller's diameter and driving roller's diameter are different.
    when there are a driven roller's inertia J'R2 and its diameter dR2 , driven roller inertia JR2 is indicated as follows.
    JR2 = J'R2 ( dR / dR2 )2

   
Frictional forceFFR= μ FP (N)
Constant external forceFC= F(N)

Moment of inertia component
Mechanism moment of inertia
(Roller)
JMC= ( JR1 + JR2 ) / R 2 (kg.m2)    
Load mass moment of inertia     JW= 0(kg.m2)    
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= π dR / R(m/rev)

Torque component
Torque by frictionTFR= FFR Kvn / ( 2π ) (N.m)
Constant torqueTC= FC  Kvn / ( 2π ) (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by force from backwardTBW= 0 (N.m)

Required torque

[Back]

Rotor [Back]

1 Load inertia( JWL )
Friction torque( TFL )
2 Gear ratio( R )
3 Gear + coupling inertia( JG )
Gear efficiency( ηG )
Total efficiency( η )

   
Mechanism moment of inertia
(Rotor)
JMC= JWL / R 2 (kg.m2)    
Load mass moment of inertia     JW = 0(kg.m2)    

Moment of inertia component
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= 1 / R

Torque component
Torque by frictionTFR= TFL Kvn(N.m)
Consntant torqueTC= 0 (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by force from backwardTBW= 0 (N.m)

Required torque

[Back]

Rotation table [Back]

1 Load inertia( JWL )
2 Mass of load( mWL )
3 Radius of load mass( rWL )
4 Coefficient of friction( μ )
5 Gear ratio( R )
6 Gear + coupling inertia( JG )
Gear efficiency( ηG )
7 Mass of rotation table( mT )
8 Rotation table diameter( dT )
9 Holding shaft diameter( dF )
10 Main shaft diameter( dS )
11 Main shaft length( lS )
Main shaft density( ρS )
Total efficiency( η )

   
Mechanism moment of inertia
(Table + shaft)
JMC= (π ρS lS dS4 / 32 + mT dT2 / 8 ) / R 2     (kg.m2)    
Load mass moment of inertia     JW= ( JWL + mWL rWL2 ) / R 2(kg.m2)

Moment of inertia component
Load moment of inertiaJL= JMC + JG + JW(kg.m2)    
Total load moment of inertiaJA= JL + JM + JMO(kg.m2)    
*Kvn= 1 / R

Torque component
Torque by frictionTFR= μ ( mWL + mT )g ( dF / 2 ) Kvn(N.m)
Constant torqueTC= 0 (N.m)
Torque by force from forwardTFW= 0 (N.m)
Torque by froce from backwardTBW= 0 (N.m)

Required torque

[Back]

Linear single axis [Back]

1 Mass of load( mW )
2 Mass of table( mT )
3 Friction force( FFR )
Force margin( KM )
Total efficiency( η )
* Friction force( FFR )
Please include the following thrust by which coefficient of friction is considered to the friction force.
1.The load required thrust by which the friction coefficient of machine part is considered, such as a linear guide.
2.Mass of linear motor movable required thrust by which the friction coefficient of machine part is considered, such as a linear guide.
3.The power-of-absorption part required thrust of the linear motor with core by which the friction coefficient of machine part is considered, such as linear guide.

* Force margin( KM )
This is a coefficient assuming the case which increases required force to accelerate or decelerate, on the structure of a machine.
Input 1 or more value by the inertia between a moving coil and the center of gravity of load.
Force to accelerate or decelerate is calculated as F = KM m a.
   
Mass of load         mL= mW + mT         (kg)
Total mass of loadmA= mL + mM (kg)

Required Force

[Back]


Required Torque/Force Equation

When you set speed such as chart below, there are equations of required torque and force.
In addition, It replace speed(vi) with rotate speed(ni) in the case of rotor or rotary table.

Velocity diagram

Section speed patterni = 1 .. n
Section timeti(s)
Section speedvi(m/s)

Example for velocity diagram


Required torque (Rotary motor case)

Section rotation speed differencenMdi = ( vi - vi-1 ) / Kvn(s-1)
 
Section acceleration torqueTAi = JA ( 2π nMdi / ( ti - ti-1 ) ) (N.m)
 
Section torqueTi(N.m)
    Normal ( nMi > 0 OR nMi = 0, nMi-1 > 0 )     Ti= TAi - TC - TFW + TFR(N.m)
    Reverse ( nMi < 0 OR nMi = 0, nMi-1 < 0 )     Ti= TAi - TC - TBW - TFR(N.m)
    Stopping ( nMi = 0)
        | TC | > TFR
          TC > 0 Ti= - TC + TFR (N.m)
          TC < 0 Ti= - TC - TFR (N.m)
        | TC | <= TFR Ti= 0(N.m)
 
Effective torqueTRMS= √( ∑ ni=1 Ti 2 ( ti - ti-1 ) / tn )     (N.m)


Required force(Linear motor type)
 
Section acceleration forceFAi = KM mA ( vi - vi-1 ) / ( ti - ti-1 )(N)
 
Section forceFi(N)
    Normal (vi > 0 OR vi = 0, vi-1 > 0 )     Fi= FAi + (   FFR / η )(N)
    Reverse (vi < 0 OR vi = 0, vi-1 < 0 )     Fi= FAi + ( - FFR / η )(N)
    Stopping (vi = 0, vi = 0 ) Fi= 0 (N)
 
Effective forceFRMS= √( ∑ ni=1 Fi 2 ( ti - ti-1) / tn )       (N)


[
Back]
Table of Contents